Modeling Biomass Production in Seasonal Wetlands Using MODIS NDVI Land Surface Phenology

نویسندگان

  • Maria Lumbierres
  • Pablo F. Méndez
  • Javier Bustamante
  • Ramón Soriguer
  • Luis Santamaría
چکیده

Plant primary production is a key driver of several ecosystem functions in seasonal marshes, such as water purification and secondary production by wildlife and domestic animals. Knowledge of the spatio-temporal dynamics of biomass production is therefore essential for the management of resources—particularly in seasonal wetlands with variable flooding regimes. We propose a method to estimate standing aboveground plant biomass using NDVI Land Surface Phenology (LSP) derived from MODIS, which we calibrate and validate in the Doñana National Park’s marsh vegetation. Out of the different estimators tested, the Land Surface Phenology maximum NDVI (LSP-Maximum-NDVI) correlated best with ground-truth data of biomass production at five locations from 2001–2015 used to calibrate the models (R2 = 0.65). Estimators based on a single MODIS NDVI image performed worse (R2 ≤ 0.41). The LSP-Maximum-NDVI estimator was robust to environmental variation in precipitation and hydroperiod, and to spatial variation in the productivity and composition of the plant community. The determination of plant biomass using remote-sensing techniques, adequately supported by ground-truth data, may represent a key tool for the long-term monitoring and management of seasonal marsh ecosystems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evaluation of Time-series of Modis Data for Transitional Land Mapping in Support of Bioenergy Policy Development

Demanding for information on spatial distribution of biomass as feedstock supply and on land resources that could potentially be used for renewable bioenergy production is rising as a result of increasing government investment for bioenergy and bioeconomy development, and as a way of adaptation to climate warning. Lands transitioned over the past between the types of forest, grassland, forage l...

متن کامل

Interannual Variability in Dry Mixed-Grass Prairie Yield: A Comparison of MODIS, SPOT, and Field Measurements

Remote sensing is often used to assess rangeland condition and biophysical parameters across large areas. In particular, the relationship between the Normalized Difference Vegetation Index (NDVI) and above-ground biomass can be used to assess rangeland primary productivity (seasonal carbon gain or above-ground biomass “yield”). We evaluated the NDVI–yield relationship for a southern Alberta pra...

متن کامل

Using NDVI and EVI to Map Spatiotemporal Variation in the Biomass and Quality of Forage for Migratory Elk in the Greater Yellowstone Ecosystem

The Normalized Difference Vegetation Index (NDVI) and the Enhanced Vegetation Index (EVI) have gained considerable attention in ecological research and management as proxies for landscape-scale vegetation quantity and quality. In the Greater Yellowstone Ecosystem (GYE), these indices are especially important for mapping spatiotemporal variation in the forage available to migratory elk (Cervus e...

متن کامل

Phenology-Based Method for Mapping Tropical Evergreen Forests by Integrating of MODIS and Landsat Imagery

Updated extent, area, and spatial distribution of tropical evergreen forests from inventory data provides valuable knowledge for research of the carbon cycle, biodiversity, and ecosystem services in tropical regions. However, acquiring these data in mountainous regions requires labor-intensive, often cost-prohibitive field protocols. Here, we report about validated methods to rapidly identify t...

متن کامل

Modeling seasonal vegetation variation and its validation against Moderate Resolution Imaging Spectroradiometer (MODIS) observations over North America

[1] Seasonal variability of vegetation, determined by plant phenology, impacts the seasonality of surface and atmospheric water cycles as well as the seasonality of surface energy budget. At the same time, leaf seasonal variations respond to both cumulative and concurrent hydrometeorological conditions. In order to account for this vegetation feedback at the seasonal timescale, a predictive phe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Remote Sensing

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2017